Goodness-of-Fit Tests in Nonparametric Regression
نویسندگان
چکیده
منابع مشابه
Bayesian Nonparametric Goodness of Fit Tests
We survey in some detail the rather small literature on Bayes nonparametric Testing. We mostly concentrate on Bayesian testing of goodness of fit to a parametric null with nonparametric alternatives. We also survey briefly some related unpublished material. We discuss both methodology and posterior consistency.
متن کاملNonparametric Goodness-of-fit
This paper develops an approach to testing the adequacy of both classical and Bayesian models given sample data. An important feature of the approach is that we are able to test the practical scientiic hypothesis of whether the true underlying model is close to some hypothesized model. The notion of closeness is based on measurement precision and requires the introduction of a metric for which ...
متن کاملGoodness-of-fit tests for the error distribution in nonparametric regression
Suppose the random vector (X,Y ) satisfies the regression model Y = m(X) + σ(X)ε, where m(·) = E(Y |·), σ2(·) = Var(Y |·) and ε is independent of X. The covariate X is d-dimensional (d ≥ 1), the response Y is one-dimensional, and m and σ are unknown but smooth functions. In this paper we study goodness-of-fit tests for the parametric form of the error distribution under this model, without assu...
متن کاملNonparametric Goodness-of-Fit Tests for Discrete Null Distributions
Methodology extending nonparametric goodness-of-fit tests to discrete null distributions has existed for several decades. However, modern statistical software has generally failed to provide this methodology to users. We offer a revision of R’s ks.test() function and a new cvm.test() function that fill this need in the R language for two of the most popular nonparametric goodness-of-fit tests. ...
متن کاملNonparametric Goodness-of-fit Test for Heteroscedastic Regression Models
For the heteroscedastic nonparametric regression model Yni = m(xni)+σ(xni)2ni, i = 1, ..., n, a novel method is proposed for testing that the regression function m is constant. The test statistic is motivated by recent developments in the asymptotic theory for analysis of variance when the number of factor levels is large. Its asymptotic normality is derived under the null hypothesis and suitab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2006
ISSN: 1556-5068
DOI: 10.2139/ssrn.556975